Large-time asymptotics, vanishing viscosity and numerics for 1-D scalar conservation laws

نویسندگان

  • Liviu I. Ignat
  • Alejandro Pozo
  • Enrique Zuazua
چکیده

In this paper we analyze the large time asymptotic behavior of the discrete solutions of numerical approximation schemes for scalar hyperbolic conservation laws. We consider three monotone conservative schemes that are consistent with the one-sided Lipschitz condition (OSLC): Lax-Friedrichs, Engquist-Osher and Godunov. We mainly focus on the inviscid Burgers equation, for which we know that the large time behavior is of self-similar nature, described by a two-parameter family of N-waves. We prove that, at the numerical level, the large time dynamics depends on the amount of numerical viscosity introduced by the scheme: while Engquist-Osher and Godunov yield the same N-wave asymptotic behavior, the Lax-Friedrichs scheme leads to viscous self-similar profiles, corresponding to the asymptotic behavior of the solutions of the continuous viscous Burgers equation. The same problem is analyzed in the context of self-similar variables that lead to a better numerical performance but to the same dichotomy on the asymptotic behavior: N-waves versus viscous ones. We also give some hints to extend the results to more general fluxes. Some numerical experiments illustrating the accuracy of the results of the paper are also presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Deviations Principles for Stochastic Scalar Conservation Laws

Large deviations principles for a family of scalar 1 + 1 dimensional conservative stochastic PDEs (viscous conservation laws) are investigated, in the limit of jointly vanishing noise and viscosity. A first large deviations principle is obtained in a space of Young measures. The associated rate functional vanishes on a wide set, the so-called set of measurevalued solutions to the limiting conse...

متن کامل

Uniform Controllability of Scalar Conservation Laws in the Vanishing Viscosity Limit

We deal with viscous perturbations of scalar conservation laws on a bounded interval with a general flux function f and a small dissipation coefficient ε. Acting on this system on both endpoints of the interval, we prove global exact controllability to constant states with nonzero speed. More precisely, we construct boundary controls so that the solution is driven to the targeted constant state...

متن کامل

Vanishing Viscosity with Short Wave Long Wave Interactions for Systems of Conservation Laws

Motivated by Benney’s general theory, we propose new models for short wave long wave interactions when the long waves are described by nonlinear systems of conservation laws. We prove the strong convergence of the solutions of the vanishing viscosity and short wave long wave interactions systems by using compactness results from the compensated compactness theory and new energy estimates obtain...

متن کامل

Contractivity of Wasserstein Metrics and Asymptotic Profiles for Scalar Conservation Laws

The aim of this paper is to analyze contractivity properties of Wasserstein-type metrics for one-dimensional scalar conservation laws with nonnegative, L∞ and compactly supported initial data and its implications on the long time asymptotics. The flux is assumed to be convex and without any growth condition at the zero state. We propose a time–parameterized family of functions as intermediate a...

متن کامل

Pointwise convergence rate for nonlinear

We introduce a new method to obtain pointwise error estimates for vanishing viscosity and nite diierence approximations of scalar conservation laws with piecewise smooth solutions. This method can deal with nitely many shocks with possible collisions. The key ingredient in our approach is an interpolation inequality between the L 1 and Lip +-bounds, which enables us to convert a global result i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2015